Difference of Weighted Composition Operator from Weighted Bergman Spaces to Weighted-type Spaces (communicated by Songxiao Li)
نویسنده
چکیده
The boundedness of the difference of two weighted composition operators from weighted Bergman spaces to weighted-type spaces in the unit ball are investigated in this paper.
منابع مشابه
Weighted composition operators on weighted Bergman spaces and weighted Bloch spaces
In this paper, we characterize the bonudedness and compactness of weighted composition operators from weighted Bergman spaces to weighted Bloch spaces. Also, we investigate weighted composition operators on weighted Bergman spaces and extend the obtained results in the unit ball of $mathbb{C}^n$.
متن کاملEssential norm of generalized composition operators from weighted Dirichlet or Bloch type spaces to Q_K type spaces
In this paper we obtain lower and upper estimates for the essential norms of generalized composition operators from weighted Dirichlet spaces or Bloch type spaces to $Q_K$ type spaces.
متن کاملWeighted composition operators from Bergman-type spaces into Bloch spaces
Let D be the open unit disk in the complex plane C. Denote by H(D) the class of all functions analytic on D. An analytic self-map φ : D → D induces the composition operator Cφ on H(D), defined by Cφ ( f ) = f (φ(z)) for f analytic on D. It is a well-known consequence of Littlewood’s subordination principle that the composition operator Cφ is bounded on the classical Hardy and Bergman spaces (se...
متن کاملGeneralized Weighted Composition Operators From Logarithmic Bloch Type Spaces to $ n $'th Weighted Type Spaces
Let $ mathcal{H}(mathbb{D}) $ denote the space of analytic functions on the open unit disc $mathbb{D}$. For a weight $mu$ and a nonnegative integer $n$, the $n$'th weighted type space $ mathcal{W}_mu ^{(n)} $ is the space of all $fin mathcal{H}(mathbb{D}) $ such that $sup_{zin mathbb{D}}mu(z)left|f^{(n)}(z)right|begin{align*}left|f right|_{mathcal{W}_...
متن کامل